
Polygons on the honeycomb lattice

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1989 J. Phys. A: Math. Gen. 22 1371

(http://iopscience.iop.org/0305-4470/22/9/024)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 15:00

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/22/9
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys. A: Math. Gen. 22 (1989) 1371-1384. Printed in the U K  

Polygons on the honeycomb lattice 

I G Entingi and A J Guttmann$ 
CSIRO Division of Atmospheric Research, Private Bag 1, Mordialloc, Victoria 3195 
Australia 
$ Department of Mathematics, University of Melbourne, Parkville, Victoria 3052, Australia 

Received 17 August 1988 

Abstract. We have enumerated the number of self-avoiding polygons on the honeycomb 
lattice to 82 steps. Analysis of the resulting series gives for the connective constant p = 
1.847 7 5 9 4 1 6 ~  in agreement with Nienhuis’ value of p = ( 2 + ~ ’ 2 ) ’ ’ ’ =  
1.847 75906. . . . The critical exponent a =0.4999.t (unbiased), or (Y = 
0.49998 i. 2 x lo-’ (biased). A non-physical singularity on the negative real axis is accurately 
located, and some curious results concerning the confluent singularity are obtained. 

1. Introduction 

This paper extends earlier work of Guttmann and Sykes (1973) in which the generating 
function for self-avoiding polygons on the honeycomb lattice was given to 34 terms. 
In  the present paper we have extended this enumeration to 82 terms. 

This considerable extension was made possible by improvements in several areas: 
firstly, in the algebraic techniques for enumerating polygons that span a finite rectangle, 
as detailed in the next section. Further improvements were achieved by rewriting our 
program to minimise page faulting and to more effectively utilise the memory allocation 
of the computer we used. Finally, improvements in computer technology enabled the 
resource demanding program to be run in a reasonable time. 

We considered the honeycomb lattice polygon series particularly worthy of 
extension, as it is the only lattice on which the connective constant is exactly known, 
due  to the work of Nienhuis (1982). His exact, but non-rigorous, result can be confirmed 
to high precision by analysis of our extended data, and the subsequent use of his exact 
result allows a highly accurate determination of the corresponding exponent a. 

Further, by analogy with various exactly solved models, we would expect the 
functional form of the polygon generating function to be simpler than that for other 
generating functions, such as that for the susceptibility. Thus our extended data might 
be useful in the search for an exact solution. 

In the next section we describe the improvements to the generating function methods 
for enumerating honeycomb polygons, while § 3 describes the inclusion-exclusion 
relations which provide a way of combining the finite lattice data to give the infinite 
lattice results. We also give the exact generating function for the enumeration of 
convex polygons, the set of n-step polygons that can fit into a rectangle of perimeter 
n steps, but no smaller rectangle. This enables us to extend our results by an  additional 
two steps, as described in S 3, resulting in the 82-step series which is analysed in § 4. 
As well as the physical singularity, a non-physical singularity is found and its position 
located reasonably accurately. 

0305-4470/89/091371+ 14$02.50 0 1989 IOP Publishing Ltd 1371 
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2. Generating functions for enumerating polygons 

The use of generating functions for enumerating polygons on two-dimensional lattices 
was described by Enting (1980) in his work on the enumeration of polygons on the 
square lattice. The relatively minor nature of modifications required to enumerate 
polygons on related lattices is shown in our work enumerating polygons on the L and 
Manhattan lattices (Enting and Guttmann (1989, which also reported an extension 
of the square lattice series). Our most recent work (Guttmann and Enting 1988a) 
further extends the square lattice series (to 56-step polygons) and includes the calcula- 
tion of caliper moments. This most recent work also includes a number of results 
concerning the computational complexity of the calculations that carry over to the 
present analysis. 

The algebraic generating function techniques have two requirements. The first is 
a technique for determining the number of polygons that span the length of a rectangle 
W bonds wide by L bonds long. The second requirement is a procedure for combining 
such enumerations to give the number of polygons per site on an infinite lattice. This 
latter problem is addressed in 9 3 below. 

The present calculations treat the honeycomb lattice as a sublattice of the square 
lattice. This can be done in terms of two distinct orientations as shown in figure 1. 
Since our algebraic techniques distinguish between the two square lattice axes, the 
orientations shown in figure 1 are significant. For reasons of efficiency we shall make 
use of both orientations. For each orientation the vertices are of two types, as shown 
in figure 1. The algebraic techniques enumerate polygons spanning the lengths of 
rectangles. We have to define two types of rectangles for each orientation and we do 
this according to the type of the first site (conventionally top left) that we insert when 
building up a rectangle. 

The algebraic technique involves drawing a cross section line through the rectangle, 
intersecting a set of bonds and dividing the rectangle into two. The basic combinatorial 

( a )  Direct ion 1 

Direct ion 0 

Direct ion 0 
Vertex 0 
I 

Direction 0 
Vertex 1 

Direction 1 Direction 1 4 Vertex 1 1 Vertex 0 

Figure 1 ( a )  The two distinct orientations possible when representing the honeycomb 
lattice as a sublattice of the square lattice. ( b )  The two vertex types occurring in the 
respective orientations. 
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object is a state vector. Each component of such a vector is a generating function for 
loops in the region to the left of the cross section line P that cut the cross section line 
in a specified pattern. The allowed patterns are described by Enting (1980). Each 
pattern can be represented by an  ordered set of bond states ( n ,  . . . nm), where 

n,  = o  empty bond 

= 1  

= 2  

link in part of loop being seen for the first time 

link in part of loop being seen for second time. 

These pattern arrays are subject to the constraint that the sequence n ,  to f l k  must never, 
for any k, contain more 2s than 1s and the numbers of 1s and 2s in the total sequence 
must be equal. (As a technical point, we regard the 0, 1, 2 specification of the pattern 
as digits in a base-4 integer and use this integer as an index for the state vector, using 
a hash-addressing scheme. The use of base 4 allows us to use bit masking to recover 
bond states.) A generating function expression for the number of allowed patterns of 
a given length (and thus for the size of the state vector) is given by Guttmann and 
Enting (1988a, equation (10)). Enting (1980 figures 1, 2 and 3; equations (2.2)-(2.4)) 
gives a detailed description of the way in which movement of the cross section line 
corresponds to transformation of the algebraic expression. 

We enumerate polygons in finite rectangles by moving the cross section line through 
the rectangle, adding one site at a time. Initially the cross section line will cut the two 
bonds leading into the next site to be added. After adding the site, these two bonds 
will no longer cut the cross section line but two new bonds will. The addition of a 
site thus corresponds transforming states ‘in’ into states ‘out’ in all allowable ways. 
In its simplest form, changing from a square lattice to a restricted lattice (e.g. L, 
Manhattan or  honeycomb) simply corresponds to a restriction on the number of ways 
that are allowed. Such restrictions will depend on the orientation and vertex type. 

Figure 2 lists the possible inputs in the leftmost column. The second column lists 
the possible outputs for the full square lattice (based on figure 8 of Enting 1980). The 
next four columns give the allowed outputs for the honeycomb lattice, classified 
according to orientation and  vertex type. As entry of h a ’  indicates that the input is 
not allowed to occur in that context, in the sense that any such occurrence (for which 
we test) would indicate a program failure and not simply a zero-weight configuration. 
As in all our previous polygon enumerations we introduce ‘ghost’ bonds extending 
beyond the rectangle so that, so far as is possible, boundary sites are treated equivalently 
to internal sites. The main exceptions occur at the lowest site. In this case, outputs 
with a non-zero state in the vertical bond (i.e. the ghost bond) are not permitted. 
Inputs with a 2 in the lowest horizontal bond (corresponding to n ,  = 2) are an error 
condition for which we test. 

Treating the honeycomb lattice as a restricted square lattice with the output states 
specified in columns 2-6 of figure 2 is quite a powerful technique for enumerating 
polygons on the honeycomb lattice. In the course of the present study we used the 
technique to extend the polygon enumeration to 46 steps. 

However, this direct approach makes inefficient use of space when enumerating 
polygons using orientation 1. In this case about half the square lattice bonds cut by 
the cross section line must be in state 0 because of the restrictions on the lattice. The 
precise positions of these bonds will depend on the position of the kink in the cross 
section line and  the vertex type of the top of the column, i.e. many different subsets 
of the full set of square lattice pattern arrays are required as the construction proceeds. 
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Figure 2. Bond-state transition matrix for adding one site. The left-most column lists all 
allowed input states. The second column lists corresponding allowed output states for the 
unrestricted square case. Columns 3-6 list output states for the honeycomb lattice, classified 
according to orientation and vertex type. Entries marked na denote forbidden inputs, for 
a particular case. Columns 7 and 8 are the allowed outputs for vertex types 0 and 1 using 
the alternative representation for orientation 1. 

We are able to achieve a much more efficient use of space by letting our patterns 
involve mainly actual bonds of the honeycomb lattice. We introduce a single ‘ghost’ 
bond to preserve the formal ‘2-in’, ‘2-out’ nature of our site-addition rules. Our 
procedure for doing this is shown in figure 3. When a type-0 site is added a real bond 
and a ghost bond are replaced by the two real bonds. When a type-1 vertex is added, 
two real bonds are replaced by a real bond and a ghost bond. In this approach, the 

--I--’ 
Figure 3. The use of an internal ghost bond (dotted) in the modified approach to orienta- 
tion l .  
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set of allowable patterns is a dense subset of the full set of allowable square lattice 
patterns. One point to note is that after adding a type-1 vertex, the two output bonds 
become the two input bonds for the next site addition. After adding a type-0 vertex 
only one of the output bonds is used in the new input. The new inputs are obtained 
by shifting one place to the left in the array of pattern indices. In all our previous 
enumerations (square, L, Manhattan and direct approach to the honeycomb) we used 
techniques that moved one place along the pattern array every time a site was added. 

The requirement of stepping along the pattern array, only after adding type-0 
vertices in the present case is to be expected since the size of the pattern array will be 
of order half the width. The last columns of figure 2 show the allowed outputs for the 
various inputs when using this approach. Figures 4 and 5 show the process of adding 
a full column to rectangles of width 3 and 4. These diagrams illustrate two important 
details. The first is that if the last site was of type 1 then the pattern index has to be 
reset by shifting one place before working on the next column. This procedure, shifting 
the ghost bond from bottom to top, was used in all previous enumerations. However, 
if a type-0 site occurs at the bottom of a column then the pattern index has to be 
shifted two places. The second point to note is that if the width is odd then the number 
of elements required in the pattern array alternates from column to column. This must 
be taken into account when setting the starting position in the pattern array. 

i 
/I 

Figure 4. Successive movement of cross section line, P, (shown double) and ghost bonds 
(shown broken) when adding a column of sites to a rectangle of width 3 for the modified 
approach to orientation 1 of the honeycomb lattice. 

F r 
Figure 5. As for figure 4 but for width 4 to illustrate the difference between odd and even 
widths. 
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For an  even width, W, B = 2 +  W / 2  bonds are required. For an  odd width, the 
number alternates between 2 +  ( W +  1)/2 and  2 +  ( W  - 1)/2. Thus an  odd width will 
(for half the columns) require as many bonds as the succeeding even width. For the 
lattices considered in our earlier work and  for the 0 orientation of the honeycomb 
lattice the number of bonds is W+2 .  Thus for a given number of bonds, and  
consequently a given limit on the size of the state vector, the rectangles that can be 
treated in the 1 orientation are twice as wide as can be treated in the 0 orientation. 
(It should be noted that we specify widths of rectangles in terms of numbers of bonds 
rather than numbers of sites. This agrees with our recent publications but Enting 
(1980) expressed widths in terms of numbers of sites.) We use a maximum of B = 15 
which requires a state vector with 113 634 components (Guttmann and Enting 1988a). 

3. Inclusion4xclusion relations 

The inclusion-exclusion relations provide a way of combining polygon enumerations 
on finite rectangles to give the infinite lattice limit. Such inclusion-exclusion relations 
for rectangles (defined in terms of the inverse of an incidence matrix) were exploited 
in the computational techniques used by d e  Neef and Enting (1977). Their use has 
been simplified by the explicit relations obtained by Enting (1978). The reduced 
symmetry of the honeycomb lattice requires the consideration of four distinct cases 
where only one case was involved for the square lattice. The symmetry involved and 
the consequences for inclusion-exclusion relations, are precisely the same on the 
honeycomb lattice as for the checkerboard Potts model considered by Enting (1987). 
In  previous polygon enumeration, the Manhattan lattice involved consideration of two 
cases (two types of site) while the L lattice involved only one case because translation 
from one class of site into the other was simply equivalent to reversal of all the directed 
bonds. 

For the honeycomb lattice, we consider the lattice fixed in the ‘1’ orientation for 
the purposes of distinguishing width and  length as the vertical and horizontal 
dimensions in our diagrams. 

Let g i n  be the generating function for polygons that fit into a rectangle of width 
m and length n with the top  left vertex of type i = 0, 1 but not into any smaller rectangle. 

We put 

(1) 1 gmn = g t n  + gmn 9 

For the infinite lattice, the polygon generating function is 

= C gmn correct to x Z k .  
m, n 

m + n s k  

The quantities computed by the procedures of the previous section are, from working 
in the ‘1’ orientation 

(3) HLn = g L n + g L - 1 , n + g ~ - ~ 1 , n + 2 g L - ~ , n + g m - 2 , n  1 - 1  * * 

or, more simply, 
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n 

G m n  = ( n  - j +  l )gn , *  

Relations (4) and (5) are inverted as 

] = I  

g m n  = H m n  - 2 H m - I , n + H m - 2 . n  

g m n  = G m n  - 2 G m , n - l +  G m , n - 2  

and the relations 
k 

g m n  = Hkn - H k - l , n  
m = l  

and 

(5) 

can be readily derived from (6a, 6)  or  directly from (4) and (5). 
IC evaluating the sum ( 2 6 ) ,  we will use H,, for m = 1 to 2 W and Gmn for n = 1 

to W i.e. Hmm is evaluated using the 1 orientation with m as the width and Gmn is 
evaluated in the 0 orientation with n as the width. 

This enables us to evaluate (26)  as 

For small m, n we have a choice as to whether we evaluate gmn in terms of Hm, or 
Gmn. The development is simplest if we retain the arbitrary nature of the division. 
We simply require two limit functions p (  9 )  and q( . )  such that 

m, n n m = l  m n = l  
m t n S 3 W ' I  

= C ( H p ,  n 1, n - ~ p (  n ) - 1 .n + C ( G m . q ,  m 1 - G m , q ,  m 1 - I 1. ( 9 6 )  
n m 

As in all generating function expressions, generating functions with zero or negative 
indices are set to zero. We use 

p ( n )  = 3  W +  1 - n n s  W + l  ( l o a )  

= W + n  n c  W (106)  

and 
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There is an additional modification that can be made to improve the efficiency of the 
calculation. We can express the polygon generating function as 

C(X)= C gmn=C { a m , ( H O n + H ~ n ) + b m n ( G O , , + G ~ n ) }  ( 1 2 )  
mn mn 

with all the coefficients am,,, b,, either -1, 0 or 1 by virtue of (9b). For odd j we 
have, from the obvious geometrical symmetry, 

HYn = Hjn and G", = GL,, 

Thus for odd j we can replace a,,,(HY,,+ Hj, , )  by 2a,,HYn and b,(GO,+GLJ) by 
2 b , (  GO,). These transformations remove the requirement for half of the transfer 
matrix calculations for odd widths. This achieved a 20% reduction in computer time 
for odd W. 

The other symmetry relations do not give a similar reduction. Most rectangles of 
odd length must still be processed as a step towards treating longer even-length 
rectangles. An additional improvement could be achieved by modifying the limit of 
the summation for type-0 rectangles of even width because in the sum (9a)  the longest 
rectangles of even width will have odd length. However the potential improvement is 
too small for it to be worth introducing yet another special case. 

As in the square lattice case (Guttmann and Enting 1988a) the inclusion-exclusion 
relations provide a basis for calculating the correction terms required to extend the 
series. The summation in (9a)  with W = 13 enumerates all polygons that can fit into 
rectangles with perimeter p s 80. This gives all polygons with n s 80 and all 82-step 
polygons with p S 80. This represents all 82-step polygons except for those for which 
p = n = 8 2 .  The set of polygons with n steps that can fit into a rectangle of perimeter 
n but not into any smaller rectangles, were referred to as convex polygons by Guttmann 
and Enting (1988b). The convexity property is defined in terms of the square lattice 
and this definition has no natural interpretation on the honeycomb lattice. For example, 
figure 6 shows that honeycomb lattice polygons may, when mapped onto the square 

n 

U 
Figure 6. Mapping of a honeycomb lattice onto a sublattice of the square lattice showing 
how the square lattice convexity property can depend on the orientation of the mapping. 
Thus our convexity property has no natural interpretation on the honeycomb lattice. 
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lattice, be either convex or non-convex depending on their orientation. Thus, unlike 
the square lattice, the convex honeycomb lattice polygons are of little interest except 
as correction terms in the present analysis. 

These convex polygons can be readily enumerated as on the square lattice. 
Guttmann and Enting (1988b) noted that for orientation 1 ,  recurrence relations for 
the honeycomb lattice were given by restricting the ranges of the summations that 
occurred in the square lattice case. Two types of rectangle must be considered and 
the results are not rotationally invariant. These differences involve trivial changes to 
the square lattice enumeration procedure and so the enumeration can be easily extended 
to the limits of the available machine integer size or further if residue arithmetic is 

Table 1. Coefficients of the polygon generating function, where cln is the number of 2n-step 
polygons embeddable on the honeycomb lattice. 

6 
8 

10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
40 
42 
44 
46 
48 
50 
52 
54 
56 
58 
60 
62 
64 
66 
68 
70 
72 
74 
76 
78 
80 
82 

1L 
18 
65 

138 
43 2 

1074 
3 231 
8 718 

25 999 
73 650 

220215 
643 546 

1937 877 
S 783 700 

17 564 727 
53 222 094 

163 009 086 
499 634 508 

1542392088 
4 770 925 446 

14832934031 
46227 584010 

144632622552 
453628244950 

1427228330481 
4500947210772 

14231512500103 
45 095 972 401 236 

143219294049399 
455745 199043542 

1453 111646955645 
4641449091849300 

14851454597198009 
47598 148798881660 

152789607567089925 
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used. However as with the square lattice, a relatively small number of terms suffice 
for determining a recurrence relation 

[ ( n  + 1)2- 12(n + 1) +20]p2,+, -[4n -22]p,, - [7(n - 1)’-60(n - 1) +52]p2,-, 

-[2(n -2)’-24(n -2)+20]p2,-,+[12(n -3)’-52(n -3) - 16]p,,-, 

+[8(n -4)2-24(n -4)-32]pz,-s 

=206,,-1 +226,,,-526,1 +86,,2+46,,3+86,,, 

where the coefficientsp,, are the number of (2m + 6)-step convex polygons embeddable 
on the honeycomb lattice, with generating function P ( x )  = I:=, pznxn, and  p 2 ,  = 0 for 
m < 0. This corresponds to the differential equation for the generating function 

P”(x)(x’ - 7x4 - 2x5+ 12x6+ 8 ~ ’ )  + P’(x)( -1 I X  -4x2 + 53x3 + 22x4-4Ox5 - 1 6 ~ ‘ )  

+P(x)(20+22x-52x2-20x3- 16x4-32x5) 

= 2 0 1  22x - 52x2+ 8x3 + 4x4+ 8x5 (13) 

which has the solution 

P ( x )  = [ 1 -2x+x2-x4-x2(  1 -4X’)ll2]/[( 1 + x ) ( l  -2X)l2. (14) 

The singularity structure on the real axis is the same as for convex polygons on 
the square lattice, that is, a confluent exponent of 4, and a leading exponent of 2 at 
the critical point x = 4. In addition, there is a singularity at x = -1 which has no 
counterpart on the square lattice. The required correction term is p s z  = 703, 245, 931, 
702. 

These conjectured results have subsequently been confirmed by Lin and  Chang 
(1988). We have recently learned that the results for the square lattice were in fact 
first obtained by Delest and  Viennot (1984). 

The series to 82 terms is given in table 1. It required two runs on a Cyber 990, 
each taking 18 hours of CPU time, and 20 hours of monitor time (reflecting massive 
page faulting). A third run confirmed our results. Each sum uses the arithmetic of 
integers modulo a given prime, which allows integers larger than those which can be 
stored for use (Guttmann and Enting 1988a). We used the two largest primes less 
than 215. In this way the least significant digits are given, while the method of differential 
approximants was used to obtain the most significant digits. This approach is described 
in greater detail in Guttmann and Enting (1988a). 

4. Analysis of series 

We have analysed the polygon-generating function by the method of differential 
approximants, utilising the scheme developed in Guttmann ( 1987), which was also 
used for the analysis of the square lattice generating function in Guttmann and Enting 
(1988a). The results of the unbiased analysis are given in the first four columns of table 
2. We combine these entries using the method described in Guttman (1987), which is 
simple statistical procedure that involves a weighted mean of those table entries that 
have an error less than some multiple of the smallest error of the individual errors 
given. In this case the multiple was precisely 5, so that only those entries orresponding 
to n = 33, 35, 36, 37 and  38 were used in the final estimate of the critical exponent 
based on first-order differential approximants. The errors referred to above are in all 
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Table 2. Summary of exponent and critical point estimates using ( a )  first- and ( b )  
second-order differential approximants. Biased exponent estimates are also given. The 
column labelled N implies that coefficients to order x ~ ~ + ~  were used in the analysis and 
the column labelled I gives the number of approximants used in forming the averages 
quoted at each order. If I < 4, the entry is not used in the overall error analysis. 

N Critical point 

22 0.292 8964 
23 - 
24 0.292 8951 
25 
26 0.292 8989 
27 0.292 8926 
28 0.292 8934 
29 0.292 8918 
30 0.292 8930 
31 0.292 8929 
32 0.292 8925 
33 0.292 8934 
34 0.292 8929 
35 0.292 8928 
36 0.292 8932 
37 0.292 8931 
38 0.292 8930 

- 

Error 
Biased 

Exponent Error I exponents Error 

1.504 30 - 1 1.503 238 (8233) 
- - 0 1.499 868 (4436) 
1.499 3 1 (80) 2 1.499 192 (1783) 
- - 0 1.500081 (1830) 
1.498 03 (238) 3 1.500 191 (2169) 
1.500 14 (416) 5 1.499 552 (3002) 
1.500 16 (399) 8 1.500 204 (500) 
1.500 61 (389) 9 1.500 134 (290) 
1.500 19 (161) 12 1.500 054 (261) 
1.500 18 (295) 11 1.499 965 (467) 
1.500 38 (159) 10 1.500009 (113) 
1.499 97 (57) 9 1.500 028 (99) 
1.500 16 (83) 11 1.500 062 (63) 
1.500 27 (55) 11 1.500 028 (35) 
1.500 03 (53) 11 1.500051 (110) 

1.500 14 (14) 12 1.500 022 (12) 
1.500 09 (24) 11 1.500 029 (25) 

I 

10 
10 
10 
11 
12 
11 
12 
12 
12 
10 
11 
10 
11 
9 

12 
11 
9 

24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 

0.292 8998 
0.292 8941 

0.292 8854 
0.292 8893 
0.292 8922 
0.292 8921 
0.292 895 1 
0.292 8948 
0.292 8947 
0.292 8901 
0.292 8922 
0.292 8933 
0.292 8932 

- 

1.498 16 
1.500 15 

1.502 67 
1.501 78 
1.500 45 
1.500 39 
1.498 70 
1.498 85 
1.498 89 
1.500 50 
1.500 37 
1.499 9 1 
1.500 07 

- 

- - 
1 
1 
0 

(181) 2 
(292) 3 
(121) 4 
(129) 6 
(490) 7 
(295) 7 
(210) 8 
(110) 6 
(147) 5 
(94) 7 
(39) 8 

- 
- 
- 

1.500 132 
1.500 473 
1.500 378 
1.501 402 
1.500446 
1.500 116 
1.500 023 
1.499 944 
1.499 938 
1.500 030 
1.499 985 
1.499 996 
1.500 028 
1.500 030 
1.500 040 

1 
1 
2 
1 
3 
4 
4 
7 
5 
7 
8 
7 
7 
8 
7 

cases two standard deviations about the mean, and these are shown parenthesised in 
table 2. 

Combining the tabulated results gives 

xf = 0.292 8930 (2) 2 -a=1 .50011  (13) (first order) 

xf = 0.292 8932 (8) 2 - LY = 1.500 22 (36) (second order). 

These results do not display quite the level of precision seen in the analysis of the 
square lattice series, which had errors about a factor of 3 smaller than those given for 
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first-order approximants, and  about a factor of 10 smaller for second-order 
approximants. Nevertheless, they are still highly accurate and provide strong support 
for both the result of Nienhuis (1982) that xf = 1 - l / &  = 0.292 893 2188 . . . , and for 
the result that 2 - 0  =; which follows from Nienhuis's result that Y = $  together with 
hyperscaling. 

Unlike the square lattice, one knows the exact critical point in this case, so biased 
approximants can also be constructed. These give estimates of 2 - a ,  and are also 
summarised in table 2, in the fifth and sixth columns. Combining these results as 
above gives 

2 - CY = 1.500 025 (12) 

2 - a = 1.500 020 (15)  

(first order) 

(second order) 

estimates which are a n  order of magnitude more accurate than the unbiased estimates. 
We attach no real significance to the fact that the error bounds are so tight as to just 
exclude the believed exact result. As discussed in Guttmann and Enting (1988a) this 
is believed to be due to the fact that our procedure does not attempt to extrapolate 
any trends in the data, as we believe that this should be a distinct operation. However, 
in this case there is no obvious trend to extrapolate. 

The slight inferiority of this data compared with the square lattice data can, we 
believe, be ascribed to the presence of an  additional (non-physical) singularity on the 
negative real xf axis in the honeycomb case. This singularity maps to a conjugate pair 
of singularities on the imaginary axis in the complex x plane, and is responsible for 
the well known four-term periodicity of the ratio plots seen in the honeycomb self- 
avoiding walk generating function (Guttmann 1987). This situation is also present in 
the corresponding Ising model series, except in that case the honeycomb lattice has a 
conjugate pair of singularities on the imaginary axis at *iuc, whereas for the walks 
generating function we find the imaginary singularities to be outside the circle of 
convergence. We have carried out an  analysis similar to that described above for the 
non-physical singularity, and  find the following estimates: 

xf = -0.412 38 (15) exponent = 1.44 (3 )  

xf = -0.412 22 (54) exponent = 1.46 (8) 

(first order) 

(second order). 

It is quite plausible that this exponent is exactly 1.5,  particularly as the corresponding 
non-physical exponent in the honeycomb Ising model free energy is equal to the 
corresponding exponent at  the critical point, both being 2. Tentatively accepting this 
value, a re-analysis of the data biased at an  exponent of 1.5 yields an  estimate for the 
position of the non-physical singularity of xf = -0.412 06 (5 )  or, equivalently x i 2  = 
-2.4268 (3). It is interesting to note that -2 - (2+&)/8 = -2.426 776 . . . , while it is 
known that the physical singularity satisfies xC2 = 3.414 21 . . . = 2+d/'z. While this 
agreement is quite likely fortuitous, it nevertheless provides a useful mnemonic, lying 
as it does in the centre of the estimated numerical range. In the event that it is correct, 
it may provide useful insight into the structure of the exact solution of the polygon 
generating function. 

Another aspect of our  analysis worthy of comment is our attempt to find evidence 
of a confluent singularity. In our previous analysis of the square lattice data, we 
commented that we found no evidence of a non-analytic correction-to-scaling exponent, 
and  pointed out that this was in agreement with the correction-to-scaling exponent 
predicted by Neinhuis (1982,1984) A = 1.5,  as the value of the physical critical exponent 
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($) meant that the confluent term was indistinguishable from the analytic background 
term. (This remark does not apply to the self-avoiding walk generating function, where 
the physical critical exponent is g.) For the honeycomb polygon series the critical 
point is exactly known, so that the method of Baker and Hunter (1973) for analysing 
confluent singularities can be used. As the method requires a divergent series if there 
is any analytic background term, the series has been differentiated four times, so that 
it should now diverge with an exponent of 2 +  cy = 2 . 5 .  The results are shown in the 
left-hand side of table 3, where the pole(s) give the reciprocal of the exponent(s), and 
the residues give estimates of an amplitude which is not of interest in the present 
application. There is evidence of only one exponent, and the data may be summarised 
as l / y ,  = 0.3998 * 0.0003, or y ,  = 2.501 i 0.002. As expected, there is no evidence of a 
confluent singularity. 

Almost as an afterthought, we repeated this analysis for the square lattice data. 
The results are also shown in table 3, and it is clear that as well as the expected 
singularity at 1/ y1 = 0.400 i 0.006, there is a second singularity on the positive real axis 
at I /  yz = 0.503 * 0.030, or y 2  = 2.00 * 0.01. Such a singularity in the fourth derivative 
of the polygon generating function integrates to a singularity of the form (1 - 
z/z,)’ In1 1 - z / z , /  in the generating function, or a correction to scaling exponent A = f. 
We find this result quite surprising. There is no evidence for it from other methods 
of analysis we have tried, yet it appears quite strongly on the basis of this analysis, 
though it is noteworthy that it only becomes apparent with polygons longer than 38 

Table 3. Poles of Pade approximants to four-times-differentiated square and honeycomb 
polygon generating function series, transformed by Baker-Hunter transformation to identify 
confluent singularities. 

Honeycomb lattice Square lattice 

N [N-1INI  [NIN] [ N + l / l \ i ]  N [ N - l / N ]  [ N / N ]  [ N + l / N ]  

7 
8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

0.398 18 

0.398 18* 

0.398 00 

0.396 97 

- 

- 

- 

- 
- 
- 
0.400 67 
0.588 84 
0.399 97 

0.399 86 

0.399 8 1 

0.399 81 

- 

- 

- 

0.398 22 

0.398 70 

0.399 05 

0.39948 

0.399 77 

0.399 84 

0.399 85 

0.399 85 

0.399 86 

0.399 83 

- 

- 

- 

- 

- 

- 

- 

- 

- 

0.398 58 

0.398 58 

0.398 44 

0.397 71 

0.401 38 
0.491 83 
0.399 98 

0.399 86 

0.399 81 

0.399 81 

- 

- 

- 

- 

- 

- 

- 

- 

7 0.377 86 
8 0.399 63 

0.555 70 
9 0.399 62 

0.555 94 
10 0.40247 

0.500 37 
11 0.40299 

0.493 60 
12 0.40257 

0.499 14 

0.391 70 
0.398 94 
0.595 19 
- 
- 
0.403 40 
0.487 91 
0.403 42* 
0.487 81 
0.398 44 
- 

0.395 95 
0.395 79* 

0.399 12 

0.402 77 
0.497 71 
0.400 76 
0.557 23 

- 

- 
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steps. Further, there is no evidence of such a singularity from the honeycomb data, 
and universality considerations lead us to expect the same confluent exponent in both 
cases, though this could perhaps be explained by a very small amplitude in the 
honeycomb case. Indeed, it may be that the attributes of the honeycomb lattice that 
allow the critical point to be obtained are exactly such as to cause the amplitude of 
the confluent term to vanish. Saleur (1987) investigated the corrections to scaling by 
studying the transfer matrix spectrum. In this way he obtained two such exponents, 
A ,  = f and A2 = 5. However, the first exponent A ,  corresponds to a particular operator 
which is a total derivative, and hence cannot contribute to corrections to scaling. Thus 
conformal invariance theory predicts a possible correction-to-scaling exponent A = s. 
This value is slightly higher than that which we have found. We conclude with this 
vexing question left open. 
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